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Abstract-A recently developed analytical technique of solving unsteady heat or mass transfer equations 
is applied to the case of a translating fluid sphere with the explicit purpose of scrutinizing the mathematical 
accuracy of the method. It is demonstrated that the technique could not only yield the surface response 
characteristics with high accuracy but also the details of the transient temperature or concentration field 

as well. Certain features of the solution, not previously recognized, am pointed out. 

NOMENCLATURE 

k 

P, 
R 
t, 
?; 
u, 
Y, 

thermal conductivity ; 
parameter in Laplace transform; 
radius of the fluid sphere; 
time ; 
temperature ; 
velocity ; 
radial distance measured from the 
surface of the sphere: 

X 

erfx, error function = - 
A0 s 

e-@* dp; 

erfc x, complementary error function = 
1 - erfx; 

i”erfc x, nth repeated integral of the com- 
plementa~ error function, = 

1 P-r erfc /Id&, n = 1,2,. . . . 

Greek symbols 

r;> 
0 

gamma function = 7 B(“i2)- l e -fi 
0 

x dB; 

r, ; ) 
0 

incomplete gamma function 

= jB(n/2t-1 e-@dB; 

6 polar angle me&ured from the 
front stagnation; 

thermal diffusivity ; 
non-dimensional radial distance 
= y/R. 

Subscripts 

ss, steady state; 

W, condition at the sphere surface ; 
free stream condition; 

(otzr symbols are defined in the text). 

1. I~ODU~ON 

IN A RECENT paper [l], a new analytical tech- 
nique was described for solving the unsteady 
energy boundary layer equation for laminar 
flow past a flat plate. Solutions valid for all 
times are obtained for the surface heat flux or 
temperature characteristics following a sudden 
disturbance of the plate’s thermal condition. 
The purpose of this communication is to further 
examine the usefulness of the method by apply- 
ing it to seek the transient response behavior of 
the thermal or con~ntmtion boundary layers 
outside of a translating fluid sphere subsequent 
to a step change of its surface temperature or 
concentration. This case has been chosen for 
study mainly because of the recent availability 
of an exact, closed form solution for the problem 
[Z), thus providing a unique oppo~~ity of 
assessing the mathematical accuracy of the 
proposed technique. In addition to the surface 
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characteristics, the instantaneous temperature and boundary conditions are 
or concentration profiles have also been obtained T(Y, 6 0) = T, (2) 
and compared with the exact solution. Such 
profiles were not evaluated in [l]. The new 

T(0, 8, t) = T, and T(co, 8, t) = T,. (3a, b) 

technique has the desirable feature of not only Because of symmetry, the range of 8 that needs 
being flexible, naturally leading to solutions to be considered is (0, z) and the temperature 
useful for small times but also capable of yielding field obviously must be an even function with 
accurate results. respect to 0. In [2], both exterior and interior 

2. ANALYSIS AND RESULTS 
regions of the fluid sphere were considered. 
Their initial temperatures were different but 

Figure 1 depicts a fluid sphere situated in an uniform throughout each region. It was found 
upflowing unbound fluid which has a uniform that the surface temperatures of the sphere 
and constant velocity U at large distance away underwent a step change at the instant t = O+ 
from it. To measure the purely mathematical but remained uniform and constant thereafter. 
satisfactoriness of the procedure, all assumptions Hence, the solution given in [2] can be directly 

compared with the one developed in the follow- 

For Heat Transfer For Mass Transfer 

@= 
T - T, 

Tw - Tm 
(4) @=,“L’,- (4’) 

w 03 

‘I u (5) ,“: r=-.- (5’) 

FIG. 1. Physical model and coordinate systems. 2UR 
Pe = - 

K 
(6) Pe = y (6’) 

used in [2] will be adopted It was there shown 
With these, the boundary layer equation for the 
diffusion of either heat or mass becomes 

that the temperature field in the boundary 
layer is governed by : a@ 3 

- - jPec0s85~ 
aT ae 

- - 3Ucos0Y~ 
C?T 

at R ay 
+~pesine~=i?.!! 

4 ae at2 (7) 

+~~,i,eLdT&E with 
2 Rae ay2 (1) 

~(5.8~0) = 0 (8) 
for t > 0 and y > 0. The appropriate initial @(O, 8, r) = 1 and @((c10,8, Z) = 0. (9a, b) 

ing sections 
For the case of mass transfer, the concen- 

tration boundary layer equation and the associ- 
ated initial and boundary conditions are analo- 
gous to (l)-(3) ; one needs only to replace T by 
the solute concentration C and K by the mass 
diffusivity D. 

To facilitate further discussion, we introduce 
the following dimensionless quantities. 
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We define the Laplace transfo~ of rf in the 
usual way, namely, 

@sj(5,@ = 1 e -pl @(& 8, z) dz (IO) 

and obtain from (7), (8) and (9a, b) 

a2i 3 
- 

--fZPecose5_~ 
a<2 at 

- 

-,3Pesin(?z=pii; (11) 

with 

Ti;(O, $) = p-i and@(co, 0) = 0 (12a, b) 

in which Re(p) > 0 and L is a function of < and 8, 
yet unknown. It is to be evaluated from the 
steady state solution of the problem Physically, 
1 is associated with the manner by which the 
local temperature decays to the steady state. 
The extent to which it plays a role in influencing 
the decay process depends also on the location 
in the boundary layer. In (13), we set u0 = 1 
and u,(O, 0) = u,(O, 6) = . . . = 0; hence @(O, 0) 

- ‘. We shall later demonstrate A(& 0) will 
i iuch that T(co, t3) = 0. 

Upon substituting (13) into (11) and equating 
the coefficients of like powers of (p + A), we find 

2s _ a2U,_1 an 
[ 
tau,_2 au,-, _I-_- - 

at at2 at at 
+ in - 3) at 1 au -1 

- ~Pesin81 
a0 

-; 
[ 

Pecose++?2CZ(1 +cos”t))-5-@ 4 a (52) 1 u,-1 

-f 
I 

~~-2~~-3)~-~P~~si~~~ t(,-2 1 
-i 

[ 
(n-3)$-ftj2 

0 
2 2-i(n-3)Pesin0g 

I 
u,_, 

+~(,-~)~(~)‘U~_~+t(*-3)(n-5~(~)2u”_, (14) 

for n 2 1 and u-i =‘u_~ = u_~ = u_~ = 0. 
The recurrent relation (14) can be integrated with respect to 5, beginning with n = 1, to give 

u1 = - iPe@ + 7fPe<2(l + g2)] + $<A 

u2 = &@‘~‘[-2 + p2 + kPer2p(l +.3p2) + &Pe”T”(l + $)2J 

, I 

(I5)* 

- &Pet2[p + iper2(l f p2)]1 + &c2A2 etc , . 

wherein the parametric dependence of Ti on In (15) and others that follow, we have written JJ 
p is understood. Following a procedure expoun- in place of cos 8 merely for shortness. The u,‘s 
ded in [l], we establish that the appropriate are seen to be odd or even functions of c accord- 
series solution for (11) satisfying (12a, b) is ing to whether 12 is odd or even. The desired 

3 = p-l(exp[- gPecos8t’ - (p + A)+if]} expression for the temperature field in the 

(13) * We have also calculated us, u, and us; they are omitted 
from the list in the interest of conserving space. 



362 B. T. CHAO and JAMES L. S. CHEN 

boundary layer follows i~ed~ately from in- 
verting (13). The result is 

@i(r, 059 

= [exp (- fj Pe p[* - A+[)] $‘ounA~“‘ZGn, (16) 

in which 

Go = fi + fz, G, = fi - f2 

G2 = GO - _& 

G, = G, f ~%A - f4 

G,=G,-(l+k+:X*)f, 

i 

(164 

+ : NYL% 

with 

fi = +erfc[+ @-+ - (k)*] 

fz = $Eexp(2~*81 
x erfc [$ Sr- i + (k)*] 

f3 = [exp (At< - k)] erfc (+ <r- +) (16b) 
and 

f4 = 2x_Q+exp (-[$rr-* 

- (nr)qZ>. 

It may be noted that, for n > 2, the GE’s are 
given by the following integral : 

G, = 2”-* [exp(L)<)] 
Ir 

x ~~(“‘~)-~e-“i”-~erfc(~~~~z-~)dz (164 
0 

and they are all expressible in terms of the four 
f-functions defined in (16b). A detailed examina- 
tion of their behaviour showed that : 

(i) for the entire domain of interest, namely, 
0 <r < cx) and 0 < < < co, G, ranges 
from 0 to 1, and 

(ii) lim G, = 1. 
r-+m 

While the proof of the foregoing results have 
been established only for the G,‘s listed in 
(16a), there is strong indication that they will 
hold for all n’s. 

By letting r + co in (16), one is immediately 
led to the steady state temperature distribution, 

%(L 8) = [exp (- g Pe cl<* - A*#] 
co 

x 1 l&K”? (17) 
n=o 

Differentiating (16) with respect to c and evalua- 
ting the result for 4 = 0 yield 

m 

- 5 (0, @, t) = (x~)-~ exp (-k) + At erf(%r)* - 
c 

~~-nl*~~O,~) (18) 

n=l 

with 

$$0,8)= -;P,+;%, $(O,R)=O 

$o,e) = - & Pe2(2 - $) -APepA+iA5, 2 (0,6) = 0 

i 

(184 

- & Pe*(2 - p2)A - & PepA + k A3, etc. 
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In (18) and (18a), 1 implies 40, 0). The steady 
state temperature derivative at the surface of 
the sphere can be readily obtained from (18) 
by letting z --f co. The local transient surface 
flux is 

q = -k$(O,B,t) 

= W- - T,)a@ - 
R 

ag (0, 0,~) (19) 

and the corresponding Nusselt number is 

W 
iVu = k(T, - T,) = 

a@ 
- 2 ag (0,4 4. (20) 

Oftentimes in engineering analysis, the details 
of the transient temperature field may not be 
required and only the surface characteristics 
are of interest. If this were the case, the following 
short cut in the computational procedure is 
noteworthy. Following from the establishment 
of (13), one sees that as/~?{ (O,(I) and its inverse 
&D/a< (0,8, r) would involve only the derivatives 
of the u, functions with respect to & evaluated at 
5 = 0 since, by construction, u,, = 1, and u,(O, f3) 
= ~~(0, e) = . . . = 0. Hence, all results listed in 
(18a) could be deduced in succession from the 
general recurrence relation (14) without de- 
termining the u,‘s other than ui. The observance 
of this procedure would result in a considerable 
saving of the arithmetic involved 

2.1 Evaluation of L 
To evaluate the function A(<, e), we need to 

separately determine the steady state solution. 
For the title problem such a solution has been 
given by Levich [3] and by Ruckenstein [4]. 
Rewritten in the nomenclature of this paper, it is 

@,,(5, e) = erfc 
[ 

3 I+cL 
4 pe* (2 + p)t 5 1 . (21) 

Thence, 

and the steady state local Nusselt number is 

Pe+ l+p 
Nu,, = 3 - ~ 0 II (2+&’ 

(23) 

Here again we have written p for cos 8. By 
equating (17) and (21), numerical values of 
A(<, 0) could be determined for a given Peclet 
number. The results obtained by using terms up 
to and including u5 in (17) are displayed in Fig. 2 
for 8 = 30”, 90” and 150” and for Pe = 500 and 
5000. Values of A(0, 0) were evaluated by equating 
(18) with r -+ cc and (22). For very small r’s, 
the dominating terms of the series in (17) con- 
verge rapidly. However, as 5 increases, the con- 
vergence slows down. The series becomes semi- 
divergent with further increase in 5 and Euler’s 
transformation was used in the evaluation of 
the sum. In Fig. 2, portions of the curves are 

2x IO4 - 

/ 
I.6 - 

/ 

/ 
, 

I.2 - , 

1500 -0. 
Pe=5000 

0.6 I I I IllIll I IIIIIII I I 

x 

2x10’- 

8=30° 

I< - 900 
/I 

/ 
, 

I.2 - : 
1500 

- 
*** 
I=&=500 

FIG. 2. Values of J.(l, 0) for Pe = 500 and 5000. 

shown dotted; they represent the region for 
which the series is slowly converging and the six 
terms (uo-us) which we have evaluated are not 
enough for an accurate determination of A_ The 
dashedcurves werecalculated using Euler’s trans- 
formation. It is well-known that the sum of a 
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semi-divergentseriescouldoftenbeobtainedwith 
good accuracy by using Euler’s transformation 
which, however, is not suitable for slowly con- 
verging series. 

The series involved in the evaluation of 
A(0, 0) remains convergent for all cases studied 
and the convergence is particularly rapid for 
0 = 30”. An inspection of the calculated data 
reveals that A(0, 0) increases linearly with the 
Peclet number according to 

A(0, 0) = c(e). Pe (24) 

in which C(e) = 3.249, 2.778 and 1.958, respec- 
tively, for 8 = 30”,90” and 150”. This finding has 
some interesting implications in the surface 
response characteristics as we shall later see. 

We now pause to remark on the behavior of 
the series in (16) which is not convergent when 
l is sufficiently large. From the procedure used 
in the determination of A(& Q it can be said that 
series (17) necessarily possesses a limit. Since 
the G,‘s in (16) are confined between 0 and 1, 
every term of the series is numerically less than 

the corresponding term in (17). Consequently, 
we have an indication that series (16) must also 
have a limit and that it is semi-divergent when- 
ever it is not convergent. Similar remarks could 
be made for the series in (18) since T,Jn/2)/T(n/2) 
is always positive and less than unity for any 
finite z. 

Equation (21) shows that Qp,, tends to zero as 
5 + co, as it must. In view of the fact that, in 
general, the real part of the Laplace transform 
variable p must be greater than zero, it follows 
from (13) and (17) that lim 3(& fI) = 0, as we 

T-m 

have previously indicated 

2.2 Transient temperature fields and their com- 
parison with exact solution 

Having evaluated the A’s, the transient tem- 
perature field surrounding the fluid sphere can 
be calculated from (16). To effect comparison 
with the exact solution of [2], the time variable is 
reexpressed in terms of Ut/R which is +Pez. The 
results are summarized in Table 1 for Pe = 500 

Table 1. Comparison ofpresent analysis with exact solution of [2] 

e = 300 
~- 

@ 
Ut 
F 5 Present Exact 

analysis solution 
~___~_ 

e = 90 

ut 
R 

@ 

5 Present Exact 
analysis solution 

om2 0.8208 o.sqos 
oQO7 0.4279 0.4279 
0.017 0.0542 0.0542 
0027 oGO22 00022 

0.01 0.037 OGOOO OQOOO 
0.047 OQOOO O@OOO 
0.057 00000 00000 
0.067 OQOOO 00000 

piGiG 
om2 0.823 1 
0007 0.4338 
0017 0.0573 
0,027 00025 

0.01 0047 00000 
0.067 OQOOO 
0.087 00000 
0,107 0mOO 

0.002 0.9361 0.9361 oQO2 0.9432 
0007 0.7790 0.7790 0.007 0.803 1 
0.017 0.4955 0.4955 0.017 0.5448 

0.1 0.027 0.2790 0.2790 0.027 0.3362 
0037 0.1379 0.1379 

0.1 
0.047 00941 

0.047 0.0595 0.0595 0067 0.0170 
0.057 0.0223 0.0223 0.087 om19 
0.067 0.0072 00072 0.107 OGOOO 

0.8231 ow2 0.8253 0.8253 
0.4338 0.007 0.4398 0.4398 
0.0573 0.017 00606 0.0606 
00025 0.027 00029 00029 
00000 0.01 0.047 OlzKJOo 00000 
00000 0.067 00000 00000 
00000 0.097 00000 0GOoo 
0Gml 0.257 0OOOo OQOOO 

0,942 
0.8031 
0.5448 
0.3362 
0.0941 
0.0170 
00019 

oQO2 0.9506 0.9506 
0,007 0.8285 0.8285 
0.017 0.5988 0.5988 

0.1 O-027 0.4034 0.4034 
0.047 0.1458 0.1458 
0.067 0.0381 0,038 1 
0.097 00027 00027 
0.257 00000 omxl 

e = 1500 

Ut 
R ‘t Present 

analysis 
Exact 

solution 
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Table 1. (continued) 

e = 30 e=90 e = 150 

@ Q, @ 
Ut ” Ut * 

F 5 Present Exact R c Present Exact R 
analysis solution analysis solution 

5 Present Exact 
analysis solution 

_ 

1.0 

0.01 

0.1 

1.0 

oQ02 0.9582 0.9582 
oQ07 0.8546 0.8546 
0.017 0.6563 0.6563 
0027 0.4797 0.4797 
0.037 0.3329 0.3327 
0.047 0.2187 0.2185 
0057 0.1357 0.1356 
0.067 0.0795 OQ794 

0.9730 0.002 0.9937 0.9940 
09059 0.007 0.9781 0.9790 
0.7741 0017 0.9465 0.9490 

1.0 
0.6485 0.027 0.9157 0.9191 
0.4275 

1Q 
0.047 0.8546 0.8597 

0.2580 0.067 0.7953 0.8011 
0.1419 0.097 0.7187 0.7153 
OQ709 0.257 0.3270* 0.3338 

0.002 0.9730 
0.007 0.9058 
0017 0.7738 
0Q27 0.648 1 
oQ47 0.4270 
0.067 0.2577 
0.087 0.1418 
0.107 0.0708 

jj 

OQOl 0.7202 
oQ04 0.1520 
0.007 OQ122 
0.010 oQOO3 
OQ13 OQOOO 
0.016 OQOOO 
0.019 0QOOO 
0.025 oQOOo 

0.7202 
0.1520 
0.0122 
oQOO3 
OQOOO 
OQOOO 
OQOOO 
OQOOO 

OQOI 0.7237 
0.004 0.1573 
0.007 0.0133 

0.01 
0.010 oQO04 
0.013 OQOOO 
0.019 OQOOO 
OQ28 OQOOO 
0040 OQOOO 

OQOl 0.9103 
OQ04 0.6523 
0.007 0.4304 

0.1 
0010 0.2600 
0.013 0.1431 
0.019 0.0323 
OQ28 OQ016 
oQ40 OQOOO 

OQOl 0.9573 
0.004 0.8305 
0007 0.708 1 

1.0 
0010 0.5928 
OQ13 0.4870 
0.019 0.3099 
0.028 0.1348 
0040 0.0328 

* Euler transformation used in evaluating the sum of a series. 

OQOl 0.899 1 
0.004 0.6120 
0.007 0.3748 
0.010 0.2048 
0.013 0.0993 
0.016 0.0425 
0.019 0.0160 
0.025 OQ024 

0.899 1 
0.6120 
0.3748 
0.2048 
0.0993 
0.0425 
0.0160 
0.0024 

OQOl 0.9340 
0.004 0.7405 
0.007 0.5622 
0.010 0.4078 
0.013 0.2819 
0.016 0.1854 
0.019 0.1158 
0.025 0.0383 

0.9340 
0.7405 
0.5622 
04077 
0.2819 
0.1853 
0.1157 
0.0385 

0.7237 
0.1573 
0.0133 
0QO04 
OQOOO 
OQOOO 
OQOOO 
OQOOO 

0.9103 
0.6523 
0.4304 
0.2600 
0.1431 
0.0323 
0Q016 
OQOOO 

0.9574 
0.8309 
0.7086 
0.5935 
0.4877 
0.3105 
0.1350 
0.0327 

OQOl 0.7271 0.7271 
OQ04 0.1627 0.1627 
oQQ7 0.0146 0.0146 
OQlO oQOO5 oQOO5 

001 0016 OQOOO OQOOO 
0.025 OQOOO oQoo 
0.031 OQOOO oQOOo 
0.100 OQOOO OQOOO 

OQOl 0.9220 0.9220 
0.004 0.6955 0.6955 
0.007 0.4933 0.4933 

0.1 
0.010 0.3278 0.3278 
0.016 0.1174 0.1174 
0.025 0.0144 0.0144 
OQ31 0Q024 0Q024 
0.100 OQOOO OCKKKI 

OQOl 0.9900 0.9905 
0Q04 0.9602 0.9621 
oQ07 0.9304 0.9337 

1.0 
OQlO 09011 09053 
0.016 0.8434 0.849 1 
OQ25 0.7612 0.7662 
0.031 0.7169 0.7124 
0.100 0.2364* 0.2343 

and 5000. When Ut/R = 1.0, the integrated in- are not sensitive to variations in A. For instance, 
stantaneous transfer rate over the entire sphere when Pe = 5000, 8 = 90” and 5 = 0013,1 has 
is within 1.5 per cent of the steady value and, been found to be 1.492 x 104 and, at Ut/R = 1, 
thus, for all practical purposes, the steady con- @ = 0.4870. If we arbitrarily increase the value 
dition would prevail. It goes without saying that of A by 10 per cent, there results a decrease in the 
the agreement is very good indeed Finally, we calculated value of @ by approximately l-6 per 
note that the calculated local temperature data cent 
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2.3 Local heat transfer results 
The local transient heat flux at the surface of 

the fluid sphere has also been calculated, using 
values of 40, 0) given by (24). It is convenient to 
display the results in terms of the local Nusselt 
numer ratio, i.e., 

From (22), it is seen that a~,&?~ (0,0) is pro- 
portional to Pe? Since iz(0, 0) varies linearly with 
Pe according to (24), an examination of the 
expression for ~~/~~(O, 8, r) reveals that the 
Nusselt number ratio depends on the product 
Per (= 2 Ut/R) for a given 8, In Fig. 3 the 

I,, 
I- 
f? 

2-5 1.5 I.0 075 05 o-25 015 0.i 0.05 

FIG. 3. Comparison of focal transient surfaoz flux caiculated 
from the present analysis with the exact solution of [2]. 

presently computed data for such ratios are 
plotted and compared with those evaluated from 
the exact solution. The agreement is gratifying. 
For the convenience of the designer, the variation 
of the local steady state Nusselt number with 
the Peclet number is shown in the insert 

24 solutes ~efu~ for ~~~1 times 
Series expansions for exp ( - nr), erf (,?z)*, and 

I’,&/2), suitable for small AZ, are well-known. 

Upon substituting them into (18), combining 
terms and rearranging, followed by a division 
with (22), there is obtained 

+ 32 - $)X2 - & px3 + 0(X4)] (26) 

in which X z UtjR. It is interesting to note 
that J(O, 0) does not appear in (26). An analogous 
expression for the thermal response behavior 
of the laminar boundary layer over a flat plate 
exhibits a similar character [l]. 

The first term of the series in (26) represents the 
conduction transient as one would expect. By 
comparing data calculated from (26) with those. 
fromequation (45) of [2] which is mathematically 
exact, the following errors have been noted. At 
X = O-4, (26) shows errors of 0.12 per cent, 0.74 
per cent and 1.4 per cent, respectively, for 
8 = 30°, 90” and 150”. At smaller X, the errors 
are uniformly less; however, they grow rapidly 
with increasing X, particularly at large 8. 

We have also evaluated the integrated instan- 
taneous heat transfer rate over the entire sphere 
and compared it with the exact solution. Ex- 
cellent agreement is again observed 

3. CONCLUDING REMARKS 

Since the recent introduction of the new 
analytical technique for examining the thermal 
response behavior of laminar boundary layer 
flows as described in [l], there is the urgent 
need of assessing the mathematical accuracy of 
the method. This communication fulfills, in 
part, such need 

For the case of heat or mass transfer from a 
translating fluid sphere, it is demonstrated that, 
in addition to the surface characteristics, the 
details of the transient temperature (or concen- 
tration) field can also be obtained by the method 
and with high accuracy. This was not attempted 
in [l]. In this respect, it is pertinent to point out 
that, should the info~ation on the transient 
temperature field be desired for the two problems 
examined in the said reference, the L’s must be 
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considered as a function of the similarity variable 
q, which was defined by equation (8) of that l. 
reference. Clearly, all numerical values of 1 
reported therein are actually A(0). 2. 

In view of the apparent flexibility of the method 
and its capability of yielding highly accurate 

3. 

results, further development is currently in 
progress in our laboratory. It is hoped that non- 
similar flows can likewise be treated as well as 

4 
’ 

certain turbulent boundary layers 
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SOLUTION SOUS FORME DE SERIE DU TRANSPORT DE CHALEUR OU DE MASSE 
INSTATIONNAIRE VERS UNE SPHERE FLUIDE EN TRANSLATION 

R&I&---Une technique analytique r&mment developpee pour resoudre les equations instationnaires 
de transport de chaleur ou de masse est appliquk au cas dune sphere fluide en translation dans le but 
explicite d’examiner a fond la precision mathematique de la methode. On d&montre que la technique 
pourrait non settlement foumir les caract&istiques de la reponse superficielle avec une precision tlevee, 
mais aussi les details du champ des temperatures ou des concentrations transitoires. Certaines caracteris- 

tiques de la solution, no reconnues auparavant, sont indiquees. 

REIHEN-Lt)SUNG DES INSTATIONAREN WARME- ODER STOFFAUSTAUSCHES 
AN EINER BEWEGTEN FLUSSIGKEITSKUGEL 

Zusammenfaasung- Eine kiirrbch entwickelte analytische Methode zur Liisung der Gleichungen fiir den 
Wiirme- oder Stoffaustausch wird auf den Fall einer bewegten Fliissigkeitskugel angewandt, mit der 
besonderen Absicht, die mathematische Genauigkeit dieser Methode xu prilfen Es wird gezeigt, dass die 
Methode nicht nur die charakteristischen Werte an der Oberfllche mit hoher Genauigkeit liefem kann, 
sondem ebenso die Einmlheiten der instationLren Temperatur--oder Konzentrationsverteilung. Auf 

gewisse, bisher unerkannte Eigenschaften dieser Losung, wird besonders hingewiesen. 

ACMMIITOTB=IECKOE PEIIIEHHE TEIIJIO-HJIM MACCOIIEPEHOCA H 
IIEPEMEIEAIGIIIEI&X XHAKOH C4rEPE 

AxiaoTaqAJr-Hefianrro paapa60Tamias arra~rrTri9ecKarr MeToRuKa pemeanrr ypanrrennrr 
rreorannorraprroro Tenno-nJrri Macconepenoca npriuerrerra K crryysaro nepenremarometicn 
C@pbI C qWIbI0 HCCJE~OBEIHHR MaTeMaTKW3CKOfi TOYHOCTK MeTO.'Ja. nOKa3aHO,YTO MeTOAIlKa 
He TOJIbKO MOFKeT #lTb C 6onbmoB TOYHOCTblO 9aCTOTHbW XapaKTepIlCTIlKIl IIOBepXIiOCTH, 
HO II IIO@06HbE 8HElWHkifJ HeJWT?-iHOBHBIIIt?#CH TeMIEpaTypU, a TaKHK? 8Ha'IeHMe IIOJIH 
KOH~eHTPa~MH. OTMWWOTCH HeKOTOpEJe OCO6eHHOCTM peLUeHIlH He YIIOMHHaBLUHl?CK paHf%. 


