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Abstract—A recently developed analytical technique of solving unsteady heat or mass transfer equations

is applied to the case of a translating fluid sphere with the explicit purpose of scrutinizing the mathematical

accuracy of the method. It is demonstrated that the technique could not only yield the surface response

characteristics with high accuracy but also the details of the transient temperature or concentration field
as well, Certain features of the solution, not previously recognized, are pointed out.

NOMENCLATURE
k, thermal conductivity;
Ds parameter in Laplace transform;
R, radius of the fluid sphere;
t, time;
T, temperature;
U, velocity ;
¥ radial distance measured from the
surface of the sphere:
X
. 2
erf x, error function = ?/—1; J\e"’z dg;
erfc x, complementary error function =
1 —erfx;
i"erfc x,  nth repeated integral of the com-
plementary error function, =
<<
firterfcpdfn=1,2,....
Greek symbols

n . ©
r (’), gamma function = j‘ prin-1¢-8
0
x df;
incomplete gamma function

= [prim-tesap;
4]

8, polar angle measured from the
front stagnation;

K, thermal diffusivity;
£, non-dimensional radial distance
= y/R.
Subscripts
ss, steady state;
w, condition at the sphere surface;
o0, free stream condition;;

(other symbols are defined in the text).

1. INTRODUCTION

IN A RECENT paper {1], a new analytical tech-
nique was described for solving the unsteady
energy boundary layer equation for laminar
flow past a flat plate. Solutions valid for all
times are obtained for the surface heat flux or
temperature characteristics following a sudden
disturbance of the plate’s thermal condition.
The purpose of this communication is to further
examine the usefulness of the method by apply-
ing it to seek the transient response behavior of
the thermal or concentration boundary layers
outside of a translating fluid sphere subsequent
to a step change of its surface temperature or
concentration. This case has been chosen for
study mainly because of the recent availability
of an exact, closed form solution for the problem
[2], thus providing a unique opportunity of
assessing the mathematical accuracy of the
proposed technique. In addition to the surface
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characteristics, the instantaneous temperature
or concentration profiles have also been obtained
and compared with the exact solution. Such
profiles were not evaluated in [1]. The new
technique has the desirable feature of not only
being flexible, naturally leading to solutions
useful for small times but also capable of yielding
accurate results.

2. ANALYSIS AND RESULTS

Figure 1 depicts a fluid sphere situated in an
upflowing unbound fluid which has a uniform
and constant velocity U at large distance away
from it. To measure the purely mathematical
satisfactoriness of the procedure, all assumptions

F1G. 1. Physical model and coordinate systems.

used in [2] will be adopted. It was there shown
that the temperature field in the boundary
layer is governed by:

orT yoT
T VeS0T
3 10T o*T
— i —_—— = — 1
+2Us1n6R56 Kayz n

for t >0 and y > 0. The appropriate initial
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and boundary conditions are
T(y,6,0)=T, 2

T(©,0,t) = T, and T(0,6,t) = T,. (3a,b)

Because of symmetry, the range of 0 that needs
to be considered is (0, n) and the temperature
field obviously must be an even function with
respect to 6. In [2], both exterior and interior
regions of the fluid sphere were considered.
Their initial temperatures were different but
uniform throughout each region. It was found
that the surface temperatures of the sphere
underwent a step change at the instant ¢t = 0%
but remained uniform and constant thereafter.
Hence, the solution given in [2] can be directly
compared with the one developed in the follow-
ing sections.

For the case of mass transfer, the concen-
tration boundary layer equation and the associ-
ated initial and boundary conditions are analo-
gous to (1}«3); one needs only to replace T by
the solute concentration C and x by the mass
diffusivity D.

To facilitate further discussion, we introduce
the following dimensionless quantities.

For Heat Transfer For Mass Transfer

T-T, Cc-C, ,
?=7 -7, W ®=g—¢c @
Kt Dt ,
T=2 ®) =% ®)
2
Pe = UR (6) Pe = 2UR (6)
K D

With these, the boundary layer equation for the
diffusion of either heat or mass becomes

op 3 0P
PR Pecos 8¢ Fr
3 . 0D 0%
+ZPesm0%—a—éz (7)
with
9, 0,00=0 @®)
@(0,0,7) = 1and P(c0,0,7) = 0. (9a,b)
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We define the Laplace transform of @ in the
usual way, namely,

in which Re(p) > 0 and A is a function of £ and 6,
yet unknown. It is to be evaluated from the
steady state solution of the problem. Physically,

P(E,0) = Te“" (&, 0,1)dr (10) 1 is associated with the manner by which the
0 local temperature decays to the steady state.
and obtain from (7), (8) and (9a, b) The extent to which it plays a role in influencing
2T 3 oF the decay process depends also on the location
55 + % P e COS 05 in the boundary layer. In (13), we set uo = 1
o¢ 55 _ and u,(0,8) = u,(0,0) = ... = 0; hence (0, 0)
3 P = p~1 We shall later demonstrate A(¢, ) will
—gPesinfz5 =% (D e such that (o, 6) = O
. Upon substituting (13) into (11) and equating
with the coefficients of like powers of (p + ), we find
$0,0) = p tand $(c0,0) =0 (12a,b)
Oy _ Pty A Gy Bty _ 3] 3. du,
2~é~g~— Y _ag[é 28 +(n~—3) 3 —4Pes1n6 %0
3 3 2 22 2
2 ~P«ecos@ + 8Pe E(1 + cos* 6) - 366(&)]
1], 3% or 3 2
(N 1,,[{04 3 . .04
_5» 3)552 55 (66) —Z(n~3)Pesm8%]u,,_3
1 7 oA\ 1 YA
+ ‘2‘(" - 5)5 <6_é) Up_gq + Z(" - 3)(n—-75) (6_5) U,_s (14)
fornzlandu_, =u_,=u_s=u_,=0

The recurrent relation (14) can be integrated with respect to & beginning with n = 1, to give
up = — gPellu + gPel’(1 + p?)] + 384
uy = 13gP? [ ~2 + 47 + §Pelu(l +3p7) + &P E(1 + 1?)]
~ 5Pel[u + §Pel(1 + pA)JA + $E24%, etc.

(15)*

H

wherein the parametric dependence of @ on
p is understood. Following a procedure expoun-
ded in [1], we establish that the appropriate
series solution for (11) satisfying (12a, b) is

@ =p~'{exp[— g Pecos 0 & — (p + A¥E]}
x 3 wEOe+ A (1)

1

In (15) and others that follow, we have written u
in place of cos 6 merely for shortness. The u,’s
are seen to be odd or even functions of & accord-
ing to whether n is odd or even. The desired
expression for the temperature field in the

* We have also calculated u,, 4, and uy; they are omitted
from the list in the interest of conserving space.
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boundary layer follows immediately from in-

verting (13). The result is
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It may be noted that, for n > 2, the G,’s are

given by the following integral:

¢, 0,7) } G, = 2n 2 [exp (A*é)]
= [exp (= §Pepl® — 2501 3 wd™n (16) f D1 o2 erfe (232 dz (160)
in which and they are all expressible in terms of the four
Go=f,+ fo. G, =fi — 3 Sffunctions defined in (16b). A detailed examina-
GO _ g j} 1=hh tion of their behaviour showed that:
P R k|
G.= G, + Aéf, — (i) for the entire domain of interest, namely,
Ga Gl 1éf3,1 Ja o (16a) 0<t<o and 0 < ¢ < o0, G, ranges
=Gy — (1 4+ A1+ 348915 s fromOto 1, and
+ 3 A% S, (i) im G, = 1.
Gs =G, + (1 + At + $ AEHAKS, . e _
~ (1 + 237 + LAED S, etc. While the proof of the foregoing results have
(I +35dr 45480 / been established only for the G,’s listed in
with (16a), there is strong indication that they will
- n hold for all n’s.
Sy = perfe[3 &7 - (20)1] By letting © — oo in (16), one is immediately
fo = 3lexp 22449)] led to the steady state temperature distribution,
- ¥
+ wember T ?T) ] D& 0) = [exp (— § Pepé® — 28]
= [exp(A¥¢ — Ar)]erfc (3 &~ r (16b o
f3 = [exp (A& — dn)]erfc(} &%) (16b) I,
and »=0
fo=2n"HA)texp {-[F & ¢
¢ it —{ Ar)f]z} Differentiating (16) with respect to £ and evalua-

ting the result for ¢ = 0 yield

- %?(0, 0,7) = (1)~ * exp (~ 1) + Aterf (o) — Z r,f(f:/’g) iz Ol 3 0.0 a8
with
aa“g ©,0) = %Peu + 1/1, aug ©0,0) = j
%(0, 6) = lizgpez(z u2) - 1—36Peul + 223 6u4 7 00 = ¢ (182)
5“5 5 00= 1102 To3a PeH — 55—6Pe2(2 yAA ~ %Peuxz —,13, et |
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In (18) and (18a), A implies A0, 6). The steady
state temperature derivative at the surface of
the sphere can be readily obtained from (18)
by letting T — oo. The local transient surface
flux is

oT

— k(Tw - Too) 0P
=-""R % 06,7 (19
and the corresponding Nusselt number is
__ MR _ 00
Nu = KT —T) 2 55(0’0’ 7). (20)

Oftentimes in engineering analysis, the details
of the transient temperature field may not be
required and only the surface characteristics
are of interest. If this were the case, the following
short cut in the computational procedure is
noteworthy. Following from the establishment
of (13), one sees that d®/9¢ (0, 6) and its inverse
0®/0&(0, 6, ) would involve only the derivatives
of the u, functions with respect to & evaluated at
¢ = 0 since, by construction, 4, = 1, and 4,(0, )
= u,(0,0) = ... = 0. Hence, all results listed in
(18a) could be deduced in succession from the
general recurrence relation (14) without de-
termining the u,’s other than u,. The observance
of this procedure would result in a considerable
saving of the arithmetic involved.

2.1 Evaluation of A
To evaluate the function A&, 8), we need to
separately determine the steady state solution.
For the title problem such a solution has been
given by Levich [3] and by Ruckenstein [4].
Rewritten in the nomenclature of this paper, it is
3 1+ u

(£, 0) = erfc |:Z Pe? WL

ﬂ.(m)

Thence,

0D, _3(Pe\t 1+
‘Ez@m“icﬂ(rum @

and the steady state local Nusselt number is
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Nu, = 3(Fey Ltn

* n ) 2+ w

Here again we have written u for cos 6. By
equating (17) and (21), numerical values of
M¢, 6) could be determined for a given Peclet
number. The results obtained by using terms up
to and including u, in (17) are displayed in Fig. 2
for 6 = 30°,90° and 150° and for Pe = 500 and
5000. Values of A(0, 8) were evaluated by equating
(18) with 7 — o0 and (22). For very small &,
the dominating terms of the series in (17) con-
verge rapidly. However, as ¢ increases, the con-
vergence slows down. The series becomes semi-
divergent with further increase in ¢ and Euler’s
transformation was used in the evaluation of
the sum. In Fig 2, portions of the curves are

(23)

2x10*[—

16 =
90° /
/
12— ,/
l o —f
1S P8=5000
08 Lol L talnl Ll
A
2x10°—

150° -
—  Pe=500

Lyl ]
1073 5

L1l [
1072 5 o' 2

3
FiG. 2. Values of (£, ) for Pe = 500 and 5000.

shown dotted; they represent the region for
which the series is slowly converging and the six
terms (4,—us) which we have evaluated are not
enough for an accurate determination of 4. The
dashed curves were calculated using Euler’s trans-
formation. It is well-known that the sum of a
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semi-divergentseries could often be obtained with
good accuracy by using Euler’s transformation
which, however, is not suitable for slowly con-
verging series.

The series involved in the evaluation of
A0, 0) remains convergent for all cases studied
and the convergence is particularly rapid for
0 = 30°. An inspection of the calculated data
reveals that A(0, 6) increases linearly with the
Peclet number according to

A0,8) = C(0). Pe (24)

in which C(6) = 3-249, 2-778 and 1958, respec-
tively, for 6 = 30°,90° and 150°. This finding has
some interesting implications in the surface
response characteristics as we shall later see.
We now pause to remark on the behavior of
the series in (16) which is not convergent when
¢ is sufficiently large. From the procedure used
in the determination of A(, 6), it can be said that
series (17) necessarily possesses a limit. Since
the G,’s in (16) are confined between 0 and 1,
every term of the series is numerically less than

JAMES L. S. CHEN

the corresponding term in (17). Consequently,
we have an indication that series (16) must also
have a limit and that it is semi-divergent when-
ever it is not convergent. Similar remarks could
be made for the series in (18) since I'; (n/2)/'(n/2)
is always positive and less than unity for any
finite .

Equation (21) shows that @ tends to zero as
& - oo, as it must. In view of the fact that, in
general, the real part of the Laplace transform
variable p must be greater than zero, it follows
from (13) and (17) that }:im D, 0) =0, as we

have previously indicated.

2.2 Transient temperature fields and their com-
parison with exact solution

Having evaluated the A’s, the transient tem-
perature field surrounding the fluid sphere can
be calculated from (16). To effect comparison
with the exact solution of [2], the time variable is
reexpressed in terms of Ut/R which is 3Pet. The
results are summarized in Table 1 for Pe = 500

Table 1. Comparison of present analysis with exact solution of [2]

8 = 30° 0 =90° 0 = 150°
® L] i
Ut ut Ut -
R ¢ Present Exact R ¢ Present Exact R < Present Exact
analysis  solution analysis  solution analysis  solution
Pe = 500
0002  0-8208 0-8208 0002  0-8231 0-8231 0002  0-8253 0-8253
0007 04279 0-4279 0007 04338 0-4338 0007 04398 04398
0017 00542 0-0542 0017 00573 0-0573 0017 00606 0-0606
0027 00022 0-0022 0027 00025 0-0025 0027 00029 0-0029
001 0037  0-0000 0-0000 001 0047  0-0000 0-0000 001 0047  0-0000 0-0000
0047  0-0000 0-0000 0067  0-0000 0-0000 0067  0-0000 0-0000
0057  0-0000 0-0000 0087  0-0000 0-0000 0097  0-0000 0-0000
0067 00000 0-0000 0107  0-0000 0-0000 0257 00000 0-0000
0002 09361 09361 0002 09432 09432 0002 09506 09506
0007 07790 07790 0007 08031 0-8031 0007 0-8285 0-8285
0017 04955 0-4955 0017  0-5448 0-5448 0017  0-5988 0-5988
o1 0027  0-2790 0-2790 o1 0027 03362 0-3362 ol 0027 04034 0-4034
0037 0-1379 01379 0047 00941 0-0941 0047  0-1458 0-1458
0047 00595 0-0595 0067 00170 00170 0067 00381 0-0381
0057  0-0223 00223 0087 00019 0-0019 0097  0-0027 0-0027
0067 00072 00072 0-107  0-0000 0-0000 0257  0-0000 0-0000
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Table 1. (continued)
8 =30° 0 = 90° 0 = 150°
@ [ 4
Ut Ut Ut
R ¢ Present Exact R ¢ Present Exact R ¢ Present Exact
analysis  solution analysis  solution analysis  solution
0002 09582 09582 0002 09730 09730 0002  0-9937 09940
0007 08546 0-8546 0007 09058 09059 0007 09781 09790
0017 06563 06563 0017  0-7738 07741 0017 09465 09490
10 0027 04797 04797 10 0027  0-6481 0-6485 10 0027 09157 09191
0037 0-3329 0-3327 0047 04270 04275 0047 0-8546 0-8597
0047 02187 02185 0067 02577 0-2580 0067  0-7953 0-8011
0057 01357 01356 0087 01418 0-1419 0097  0-7187 07153
0067 00795 00794 0107 00708 00709 0257  0-3270* 03338
0001 07202 07202 0001 07237 0-7237 0001 07271 07271
0004 01520 0-1520 0004 01573 01573 0004 0-1627 01627
0007 00122 00122 0007 00133 00133 0007 00146 00146
001 0010 00003 00003 001 0010  0-0004 0-0004 001 0010 00005 0-0005
0013 00000 0-0000 0013 00000 0-0000 0016 00000 0-0000
0016 00000 00000 0019  0-0000 0-0000 0025  0-0000 0-0000
0019 00000 00000 0028  0-0000 0-0000 0031 00000 0-0000
0025 00000 0-0000 0040  0-0000 00000 0100  0-0000 0-0000
0001 08991 0-8991 0001 09103 09103 0001 09220 09220
0004 06120 06120 0004 06523 06523 0004 06955 0-6955
0007  0-3748 03748 0007 04304 04304 0007 04933 0-4933
o1 0010  0-2048 02048 o1 0010  0-2600 0-2600 o1 0010  0-3278 0-3278
0013 00993 00993 0013 01431 01431 0016 01174 01174
0016  0-0425 00425 0019 00323 00323 0025 00144 00144
0019 00160 00160 0028  0-0016 00016 0031 00024 00024
0025 00024 00024 0040  0-0000 0-0000 0100 00000 0-0000
0001 09340 09340 0001 09573 09574 0001 09900 09905
0004 07405 07405 0004 08305 0-8309 0004 09602 09621
0007 05622 0-5622 0007 07081 0-7086 0007 09304 09337
10 0010 04078 04077 10 0010 0-5928 0-5935 10 0010 09011 09053
0013 02819 02819 0013 04870 0-4877 0016 08434 0-8491
0016 0-1854 0-1853 0019  0-3099 0-3105 0025 07612 0-7662
0019 01158 01157 0028 01348 01350 0031 07169 07124
0025 00383 00385 0040 00328 00327 0100  02364* 02343

* Euler transformation used in evaluating the sum of a series.

and 5000. When Ut/R = 1-0, the integrated in-
stantaneous transfer rate over the entire sphere
is within 1-5 per cent of the steady value and,
thus, for all practical purposes, the steady con-
dition would prevail. It goes without saying that
the agreement is very good indeed. Finally, we
note that the calculated local temperature data

are not sensitive to variations in A. For instance,
when Pe = 5000, 8 = 90° and ¢ = 0013, A has
been found to be 1-492 x 10* and, at Ut/R = 1,
& = 0-4870. If we arbitrarily increase the value
of A by 10 per cent, there results a decrease in the
calculated value of @ by approximately 1-6 per
cent.
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2.3 Local heat transfer results

The local transient heat flux at the surface of
the fluid sphere has also been calculated, using
values of (0, 6) given by (24). It is convenient to
display the results in terms of the local Nusselt
numer ratio, ie.,

Nu
Nug,

_FB00y

od,

3 0.0
From (22), it is seen that 0®./0£(0, 6) is pro-
portional to Pe?. Since A(0, 6) varies linearly with
Pe according to (24), an examination of the
expression for 0®/0£(0,6,1) reveals that the
Nusselt number ratio depends on the product
Per (= 2Ut/R) for a given 0. In Fig 3 the

vt
R

. (25)

=42
QSS

25 15 10075 05
f

|
e Exact solution 200

T i
L 8=302
4 [2] 100F f’ —2s
50f
o Present 00

nalysis
»  analy A, 20

IV’:: " 2", TN N T =1 IV/Y/:
01 2348
Pe  Xxio?3
‘e d — 10

X 2
'®.
, Y i o I
0028 005 (e N N 1111 0-25 05 078 O b
ur
R

0086
T

026 oI5 Ot
T

N
@ |
-
N
7

F1G. 3. Comparison of local transient surface flux calculated
from the present analysis with the exact solution of [2].

presently computed data for such ratios are
plotted and compared with those evaluated from
the exact solution. The agreement is gratifying
For the convenience of the designer, the variation
of the local steady state Nusselt number with
the Peclet number is shown in the insert.

2.4 Solution useful for small times
Series expansions for exp (— A1), erf (A7)}, and
I';(n/2), suitable for small Ar, are well-known.
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Upon substituting them into (18), combining
terms and rearranging, followed by a division
with (22), there is obtained

Nu 22+ p?
Nu, 3 1+4up

+ 32 — X% — HuX> + 0XY] (26
in which X = Ur/R It is interesting to note
that A(0, 8) does not appear in (26). An analogous
expression for the thermal response behavior

of the laminar boundary layer over a flat plate
exhibits a similar character [1].

XH1 4+ 3uX

The first term of the series in (26) represents the
conduction transient as one would expect. By
comparing data calculated from (26) with those
fromequation (45) of [ 2] which is mathematically
exact, the following errors have been noted. At
X = 04, (26) shows errors of 0-12 per cent, 0-74
per cent and 144 per cent, respectively, for
8 = 30°, 90° and 150°. At smaller X, the errors
are uniformly less; however, they grow rapidly
with increasing X, particularly at large 6.

We have also evaluated the integrated instan-
taneous heat transfer rate over the entire sphere
and compared it with the exact solution. Ex-
cellent agreement is again observed.

3. CONCLUDING REMARKS

Since the recent introduction of the new
analytical technique for examining the thermal
response behavior of laminar boundary layer
flows as described in [1], there is the urgent
need of assessing the mathematical accuracy of
the method. This communication fulfills, in
part, such need.

For the case of heat or mass transfer from a
translating fluid sphere, it is demonstrated that,
in addition to the surface characteristics, the
details of the transient temperature (or concen-
tration) field can also be obtained by the method
and with high accuracy. This was not attempted
in [1]. In this respect, it is pertinent to point out
that, should the information on the transiert
temperature field be desired for the twe problems
examined in the said reference, the A’s must be
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considered as a function of the similarity variable
n, which was defined by equation (8) of that
reference. Clearly, all numerical values of A
reported therein are actually A(0).

In view of the apparent flexibility of the method
and its capability of yielding highly accurate
results, further development is currently in
progress in our laboratory. It is hoped that non-
similar flows can likewise be treated as well as
certain turbulent boundary layers.
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SOLUTION SOUS FORME DE SERIE DU TRANSPORT DE CHALEUR OU DE MASSE
INSTATIONNAIRE VERS UNE SPHERE FLUIDE EN TRANSLATION

Résumé—Une technique analytique récemment développée pour résoudre les équations instationnaires

de transport de chaleur ou de masse est appliquée au cas d’une sphére fluide en translation dans le but

explicite d’examiner 4 fond la précision mathématique de la méthode. On démontre que la technique

pourrait non seulement fournir les caractéristiques de la réponse superficielle avec une précision élevée,

mais aussi les détails du champ des températures ou des concentrations transitoires. Certaines caractéris-
tiques de la solution, no reconnues auparavant, sont indiquées.

REIHEN-LOSUNG DES INSTATIONAREN WARME- ODER STOFFAUSTAUSCHES
AN EINER BEWEGTEN FLUSSIGKEITSKUGEL

Zusammenfassung— Eine kiirzlich entwickelte analytische Methode zur Losung der Gleichungen fiir den

Wirme- oder Stoffaustausch wird auf den Fall einer bewegten Fliissigkeitskugel angewandt, mit der

besonderen Absicht, die mathematische Genauigkeit dieser Methode zu priifen. Es wird gezeigt, dass die

Methode nicht nur die charakteristischen Werte an der Oberfliche mit hoher Genauigkeit liefern kann,

sondern ebenso die Einzelheiten der instationiren Temperatur—oder Konzentrationsverteilung. Auf
gewisse, bisher unerkannte Eigenschaften dieser Losung, wird besonders hingewiesen.

ACUMIITOTUYECKROE PEHIEHUE TEILJIO-NJUX MACCOIIEPEHOCA K
NEPEMEMAIOIENACA HKUIKON COEPE

Annoramua—Henasno paspafoTanHad aHAMUTMYECKAA METONMKA pELIEeHNA YPaBHEHUM
HEeCTAMOHAPHOrO TeINIO-MJIM MaccollepeHoca TNpPHMeHeHa K Ciyvaio Nepemerganueitcs
clepH ¢ Leabio MCCIHEJOBAHUA MaTeMaTHYeCKol TOYHOCTH MeTofa. [lokasano, YTo MeTONUMKA
He TOJBKO MOMET AATh C GONBIION TOYHOCTHIO YACTOTHHIE XAPAKTEPUCTHKH IIOBEPXHOCTH,
HO ¥ noApoGHHEe BHAYEHNA HEYCTAHOBMBIUEHCHA TEMIEPATypPH, a TaKMke BHAYeHMe TOJIA
KOHUeHTpauuu. OTMEYa0TCA HEKOTOPHe 0COGEHHOCTH peilleHMA He YHOMHHABUIMECA PaHee.



